HASS HEIL BOGACKI WEIR

THOMAS'

FIFTEENTH EDITION

CALCULUS

EARLY TRANSCENDENTALS

About the artist: Thomas Lin Pedersen is a generative artist in Denmark who mainly works on capturing dynamic systems as still imagery. Thomas's work is mainly programmed in R and the results are presented as they come out of the algorithm with no post-production applied. See more at https://data-imaginist.com/art

About the cover: The Folding Flow Series is based on a 3-D flow field created using Simplex noise. The surface is segmented into distinct areas that have different depth profiles but share x and y values. Each line in the resulting piece is made by selecting a random point and tracing its path in the flow field according to the depth profile of the area it started in. The end result is range of lines that all share the same 2-dimensional flow but have areas that divert and fold into each other.

Basic Algebra Formulas

Arithmetic Operations

$$
\begin{aligned}
a(b+c)=a b+a c, & & \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \\
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}, & & \frac{a / b}{c / d}=\frac{a}{b} \cdot \frac{d}{c}
\end{aligned}
$$

Laws of Signs

$$
-(-a)=a, \quad \frac{-a}{b}=-\frac{a}{b}=\frac{a}{-b}
$$

Zero Division by zero is not defined.

$$
\text { If } a \neq 0: \quad \frac{0}{a}=0, \quad a^{0}=1, \quad 0^{a}=0
$$

For any number $a: a \cdot 0=0 \cdot a=0$

Laws of Exponents

$$
a^{m} a^{n}=a^{m+n}, \quad(a b)^{m}=a^{m} b^{m}, \quad\left(a^{m}\right)^{n}=a^{m n}, \quad a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

If $a \neq 0$, then

$$
\frac{a^{m}}{a^{n}}=a^{m-n}, \quad a^{0}=1, \quad a^{-m}=\frac{1}{a^{m}} .
$$

The Binomial Theorem For any positive integer n,

$$
\begin{aligned}
(a+b)^{n}=a^{n} & +n a^{n-1} b+\frac{n(n-1)}{1 \cdot 2} a^{n-2} b^{2} \\
& +\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3} b^{3}+\cdots+n a b^{n-1}+b^{n}
\end{aligned}
$$

For instance,

$$
\begin{array}{ll}
(a+b)^{2}=a^{2}+2 a b+b^{2}, & (a-b)^{2}=a^{2}-2 a b+b^{2} \\
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}, & (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{array}
$$

Factoring the Difference of Like Integer Powers, $n>1$

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\cdots+a b^{n-2}+b^{n-1}\right)
$$

For instance,

$$
\begin{aligned}
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{4}-b^{4}=(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right)
\end{aligned}
$$

Completing the Square If $a \neq 0$, then

$$
a x^{2}+b x+c=a u^{2}+C \quad\left(u=x+(b / 2 a), C=c-\frac{b^{2}}{4 a}\right)
$$

The Quadratic Formula
If $a \neq 0$ and $a x^{2}+b x+c=0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Geometry Formulas

$A=$ area, $B=$ area of base, $C=$ circumference, $S=$ surface area, $V=$ volume

Triangle

$A=\frac{1}{2} b h$

Parallelogram

$A=b h$

Similar Triangles

$\frac{a^{\prime}}{a}=\frac{b^{\prime}}{b}=\frac{c^{\prime}}{c}$

Trapezoid

$A=\frac{1}{2}(a+b) h$

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Circle

Any Cylinder or Prism with Parallel Bases

Right Circular Cylinder

Any Cone or Pyramid

Right Circular Cone

Sphere

$$
V=\frac{4}{3} \pi r^{3}, S=4 \pi r^{2}
$$

THOMAS'
 CALCULUS
 Early Transcendentals

Based on the original work by
GEORGE B. THOMAS, JR.
Massachusetts Institute of Technology
as revised by
JOEL HASS
University of California, Davis

CHRISTOPHER HEIL

Georgia Institute of Technology

PRZEMYSLAW BOGACKI

Old Dominion University

MAURICE D. WEIR
Naval Postgraduate School

Pearson

Content Development: Kristina Evans
Content Management: Evan St. Cyr
Content Production: Erin Carreiro, Rachel S. Reeve
Product Management: Jessica Darczuk
Product Marketing: Stacey Sveum
Rights and Permissions: Tanvi Bhatia, Anjali Singh
Please contact https://support.pearson.com/getsupport/s/ with any queries on this content
Cover Image by Thomas Lin Pedersen
Copyright © 2023, 2018, 2014 by Pearson Education, Inc. or its affiliates, 221 River Street, Hoboken, NJ 07030. All Rights Reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on page $\mathrm{C}-1$, which constitutes an extension of this copyright page.
PEARSON and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data

Library of Congress Control Number: 2021950517

ScoutAutomatedPrintCode

Print Offer:
ISBN-10: 0-13-756015-X
ISBN-13: 978-0-13-756015-8
Rental
ISBN-10: 0-13-755989-5
ISBN-13: 978-0-13-755989-3

Contents

Preface ix
1 Functions 1
1.1 Functions and Their Graphs 1
1.2 Combining Functions; Shifting and Scaling Graphs 14
1.3 Trigonometric Functions 21
1.4 Graphing with Software 29
1.5 Exponential Functions 33
1.6 Inverse Functions and Logarithms 38
Questions to Guide Your Review 51
Practice Exercises 51
Additional and Advanced Exercises 53
Technology Application Projects 55
2 Limits and Continuity 56
2.1 Rates of Change and Tangent Lines to Curves 56
2.2 Limit of a Function and Limit Laws 63
2.3 The Precise Definition of a Limit 74
2.4 One-Sided Limits 83
2.5 Continuity 90
2.6 Limits Involving Infinity; Asymptotes of Graphs 102
Questions to Guide Your Review 115
Practice Exercises 116
Additional and Advanced Exercises 118
Technology Application Projects 121
3 Derivatives 122
3.1 Tangent Lines and the Derivative at a Point 122
3.2 The Derivative as a Function 126
3.3 Differentiation Rules 135
3.4 The Derivative as a Rate of Change 145
3.5 Derivatives of Trigonometric Functions 154
3.6 The Chain Rule 160
3.7 Implicit Differentiation 168
3.8 Derivatives of Inverse Functions and Logarithms 173
3.9 Inverse Trigonometric Functions 184
3.10 Related Rates 190
3.11 Linearization and Differentials 198
Questions to Guide Your Review 210
Practice Exercises 211
Additional and Advanced Exercises 215
Technology Application Projects 218
4 Applications of Derivatives 219
4.1 Extreme Values of Functions on Closed Intervals 219
4.2 The Mean Value Theorem 227
4.3 Monotonic Functions and the First Derivative Test 234
4.4 Concavity and Curve Sketching 239
4.5 Indeterminate Forms and L'Hôpital's Rule 252
4.6 Applied Optimization 261
4.7 Newton's Method 273
4.8 Antiderivatives 278
Questions to Guide Your Review 288
Practice Exercises 289
Additional and Advanced Exercises 292
Technology Application Projects 295
5 Integrals 296
5.1 Area and Estimating with Finite Sums 296
5.2 Sigma Notation and Limits of Finite Sums 306
5.3 The Definite Integral 313
5.4 The Fundamental Theorem of Calculus 326
5.5 Indefinite Integrals and the Substitution Method 338
5.6 Definite Integral Substitutions and the Area Between Curves 345
Questions to Guide Your Review 356
Practice Exercises 356
Additional and Advanced Exercises 359
Technology Application Projects 363Applications of Definite Integrals364
6.1 Volumes Using Cross-Sections 364
6.2 Volumes Using Cylindrical Shells 375
6.3 Arc Length 383
6.4 Areas of Surfaces of Revolution 389
6.5 Work and Fluid Forces 394
6.6 Moments and Centers of Mass 404
Questions to Guide Your Review 415
Practice Exercises 416
Additional and Advanced Exercises 418
Technology Application Projects 419
7 Integrals and Transcendental Functions 420
7.1 The Logarithm Defined as an Integral 420
7.2 Exponential Change and Separable Differential Equations 431
7.3 Hyperbolic Functions 441
7.4 Relative Rates of Growth 449
Questions to Guide Your Review 454
Practice Exercises 455
Additional and Advanced Exercises 456
8 Techniques of Integration 457
8.1 Using Basic Integration Formulas 457
8.2 Integration by Parts 462
8.3 Trigonometric Integrals 470
8.4 Trigonometric Substitutions 476
8.5 Integration of Rational Functions by Partial Fractions 481
8.6 Integral Tables and Computer Algebra Systems 488
8.7 Numerical Integration 494
8.8 Improper Integrals 504
8.9 Probability 515
Questions to Guide Your Review 528
Practice Exercises 529
Additional and Advanced Exercises 531
Technology Application Projects 534
9 First-Order Differential Equations 535
9.1 Solutions, Slope Fields, and Euler's Method 535
9.2 First-Order Linear Equations 543
9.3 Applications 549
9.4 Graphical Solutions of Autonomous Equations 555
9.5 Systems of Equations and Phase Planes 564
Questions to Guide Your Review 570
Practice Exercises 570
Additional and Advanced Exercises 572
Technology Application Projects 572
10 Infinite Sequences and Series 573
10.1 Sequences 573
10.2 Infinite Series 586
10.3 The Integral Test 596
10.4 Comparison Tests 602
10.5 Absolute Convergence; The Ratio and Root Tests 607
10.6 Alternating Series and Conditional Convergence 614
10.7 Power Series 621
10.8 Taylor and Maclaurin Series 632
10.9 Convergence of Taylor Series 637
10.10 Applications of Taylor Series 644
Questions to Guide Your Review 653
Practice Exercises 654
Additional and Advanced Exercises 656
Technology Application Projects 658
11 Parametric Equations and Polar Coordinates659
11.1 Parametrizations of Plane Curves 659
11.2 Calculus with Parametric Curves 668
11.3 Polar Coordinates 677
11.4 Graphing Polar Coordinate Equations 681
11.5 Areas and Lengths in Polar Coordinates 685
11.6 Conic Sections 690
11.7 Conics in Polar Coordinates 698
Questions to Guide Your Review 704
Practice Exercises 705
Additional and Advanced Exercises 707
Technology Application Projects 709
12 Vectors and the Geometry of Space 710
12.1 Three-Dimensional Coordinate Systems 710
12.2 Vectors 715
12.3 The Dot Product 726
12.4 The Cross Product 734
12.5 Lines and Planes in Space 740
12.6 Cylinders and Quadric Surfaces 749
Questions to Guide Your Review 755
Practice Exercises 755
Additional and Advanced Exercises 757
Technology Application Projects 759
13
13.1 Curves in Space and Their Tangents 760Vector-Valued Functions and Motion in Space760
13.2 Integrals of Vector Functions; Projectile Motion 769
13.3 Arc Length in Space 778
13.4 Curvature and Normal Vectors of a Curve 782
13.5 Tangential and Normal Components of Acceleration 788
13.6 Velocity and Acceleration in Polar Coordinates 794
Questions to Guide Your Review 797
Practice Exercises 798
Additional and Advanced Exercises 800
Technology Application Projects 801
14 Partial Derivatives 802
14.1 Functions of Several Variables 802
14.2 Limits and Continuity in Higher Dimensions 810
14.3 Partial Derivatives 819
14.4 The Chain Rule 831
14.5 Directional Derivatives and Gradient Vectors 841
14.6 Tangent Planes and Differentials 850
14.7 Extreme Values and Saddle Points 860
14.8 Lagrange Multipliers 869
14.9 Taylor's Formula for Two Variables 879
14.10 Partial Derivatives with Constrained Variables 883
Questions to Guide Your Review 887
Practice Exercises 888
Additional and Advanced Exercises 891
Technology Application Projects 893
15 Multiple Integrals 894
15.1 Double and Iterated Integrals over Rectangles 894
15.2 Double Integrals over General Regions 899
15.3 Area by Double Integration 908
15.4 Double Integrals in Polar Form 911
15.5 Triple Integrals in Rectangular Coordinates 918
15.6 Applications 928
15.7 Triple Integrals in Cylindrical and Spherical Coordinates 938
15.8 Substitutions in Multiple Integrals 950
Questions to Guide Your Review 959
Practice Exercises 960
Additional and Advanced Exercises 962
Technology Application Projects 964
16 Integrals and Vector Fields 965
16.1 Line Integrals of Scalar Functions 965
16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 972
16.3 Path Independence, Conservative Fields, and Potential Functions 985
16.4 Green's Theorem in the Plane 996
16.5 Surfaces and Area 1008
16.6 Surface Integrals 1018
16.7 Stokes' Theorem 1028
16.8 The Divergence Theorem and a Unified Theory 1041
Questions to Guide Your Review 1053
Practice Exercises 1054
Additional and Advanced Exercises 1056
Technology Application Projects 1058
17 Second-Order Differential Equations(Online at bit.ly/3aHAZo5)
17.1 Second-Order Linear Equations
17.2 Nonhomogeneous Linear Equations
17.3 Applications
17.4 Euler Equations
17.5 Power-Series SolutionsComplex Functions
18.1 Complex Numbers
18.2 Functions of a Complex Variable
18.3 Derivatives
18.4 The Cauchy-Riemann Equations
18.5 Complex Power Series
18.6 Some Complex Functions
18.7 Conformal Maps
Questions to Guide Your Review
Additional and Advanced Exercises
19Fourier Series and Wavelets
19.1 Periodic Functions
19.2 Summing Sines and Cosines
19.3 Vectors and Approximation in Three and More Dimensions
19.4 Approximation of Functions
19.5 Advanced Topic: The Haar System and Wavelets
Questions to Guide Your Review
Additional and Advanced Exercises
Appendix A AP-1
A. 1 Real Numbers and the Real Line AP-1
A. 2 Mathematical Induction AP-6
A. 3 Lines, Circles, and Parabolas AP-9
A. 4 Proofs of Limit Theorems AP-19
A. 5 Commonly Occurring Limits AP-22
A. 6 Theory of the Real Numbers AP-23
A. 7 The Distributive Law for Vector Cross Products AP-26
A. 8 The Mixed Derivative Theorem and the Increment Theorem AP-27
Appendix B (Online at bit.ly/ЗaHAZo5)
B. 1 Determinants
B. 2 Extreme Values and Saddle Points for Functions of More than Two Variables
B. 3 The Method of Gradient Descent
Answers to Odd-Numbered Exercises AN-1
Applications Index AI-1
Subject Index I-1
A Brief Table of Integrals T-1
Credits C-1

Preface

Thomas' Calculus: Early Transcendentals, Fifteenth Edition, continues its tradition of clarity and precision in calculus with a modern update to the popular text. The authors have worked diligently to add exercises, revise figures and narrative for clarity, and update many applications to modern topics. Thomas'Calculus remains a modern and robust introduction to calculus, focusing on developing conceptual understanding of the underlying mathematical ideas. This text supports a calculus sequence typically taken by students in STEM fields over several semesters. Intuitive and precise explanations, thoughtfully chosen examples, superior figures, and time-tested exercise sets are the foundation of this text. We continue to improve this text in keeping with shifts in both the preparation and the goals of today's students, and in the applications of calculus to a changing world.

As Advanced Placement Calculus continues to grow in popularity for high school students, many instructors have communicated mixed reviews of the benefit for today's university and community college students. Some instructors report receiving students with an overconfidence in their computational abilities coupled with underlying gaps in algebra and trigonometry mastery, as well as poor conceptual understanding. In this text, we seek to meet the needs of the increasingly varied population in the calculus sequence. We have taken care to provide enough review material (in the text and appendices), detailed solutions, and a variety of examples and exercises, to support a complete understanding of calculus for students at varying levels. Additionally, the MyLab Math course that accompanies the text provides significant support to meet the needs of all students. Within the text, we present the material in a way that supports the development of mathematical maturity, going beyond memorizing formulas and routine procedures, and we show students how to generalize key concepts once they are introduced. References are made throughout, tying new concepts to related ones that were studied earlier. After studying calculus from Thomas, students will have developed problem-solving and reasoning abilities that will serve them well in many important aspects of their lives. Mastering this beautiful and creative subject, with its many practical applications across so many fields, is its own reward. But the real gifts of studying calculus are acquiring the ability to think logically and precisely; understanding what is defined, what is assumed, and what is deduced; and learning how to generalize conceptually. We intend this book to encourage and support those goals.

We welcome to this edition a new coauthor, Przemyslaw Bogacki from Old Dominion University. Przemek joined the team for the 4th edition of University Calculus and now joins the Thomas’ Calculus team. Przemek brings a keen eye for details as well as significant experience in MyLab Math. Przemek has diligently reviewed every exercise and solution in MyLab Math for mathematical accuracy, fidelity with text methods, and effectiveness for students. He has also recommended nearly 100 new Setup \& Solve exercises and improved the sample assignments in MyLab. Przemek has also written the new appendix on Optimization covering determinants, extreme values, and gradient descent.

The most significant update to this 15 th edition includes new online chapters on Complex Functions, Fourier Series and Wavelets, and the new appendix on Optimization. These chapters can provide material for students interested in more advanced topics. The details are outlined below in the chapter descriptions.

We have also made the following updates:

- Many updated graphics and figures to bring out clear visualization and mathematical correctness.
- Many wording clarifications and revisions.
- Many instruction clarifications for exercises, such as suggesting where the use of a calculator may be needed.
- Notation of inverse trig functions favoring arcsin notation over $\sin ^{-1}$, etc.

New to MyLab Math

Pearson has continued to improve the general functionality of MyLab Math since the previous edition. Ongoing improvements to the grading algorithms, along with the development of MyLab Math for our differential equations courses allows for more sophisticated acceptance of generic constants and better parsing of mathematical expressions.

- The full suite of interactive figures has been updated for accessibility meeting WCAG standards. The 180 figures are designed to be used in lecture as well as by students independently. The figures are editable using the freely available GeoGebra software. The figures were created by Marc Renault (Shippensburg University), Kevin Hopkins (Southwest Baptist University), Steve Phelps (University of Cincinnati), and Tim Brzezinski (Southington High School, CT).
- New! GeoGebra Exercises are gradable graphing and computational exercises that help students demonstrate their understanding. They enable students to interact directly with the graph in a manner that reflects how students would graph on paper.
- Nearly 100 additional Setup \& Solve exercises have been created, selected by author Przemyslaw Bogacki. These exercises are designed to focus students on the process of problem solving by requiring them to set up their equations before moving on to the solution.
- Integrated Review quizzes and personalized homework are now built into all MyLab Math courses. No separate Integrated Review course is required.
- New online chapters and sections have exercises available, including exercises for the complex numbers and functions that many users have asked for.

Content Enhancements

Chapter 1

- Section 1.2. Revised Example 4 to clarify the distinction between vertical and horizontal scaling of a graph.
- Section 1.3. Added new Figure 1.46, illustrating a geometric proof of the angle sum identities.

Chapter 2

- Section 2.2. New Example 11, illustrating the use of the Sandwich Theorem, with corresponding new Figure 2.14.
- Section 2.4. New subsection on "Limits at Endpoints of an Interval" added. New Example 2 added, illustrating limits at a boundary point of an interval.
- Section 2.5. Exercises 41-45 on limits involving trigonometric functions moved from Chapter 3.
- Additional and Advanced Exercises. Exercises 31-40 on limits involving trigonometric functions moved from Chapter 3.

Chapter 3

- Section 3.8. Revised Figure 3.36 illustrating the relationship between slopes of graphs of inverse functions.
- Updated differentiation formulas involving exponential and logarithmic functions.
- Expanded Example 5.
- Expanded Example 7 to clarify the computation of the derivative of x^{x}.
- Added new Exercises 11-14 involving the derivatives of inverse functions.
- Section 3.9. Updated differentiation formulas involving inverse trigonometric functions.
- Added new Example 3 to illustrate differentiating a composition involving the arctangent function.
- Rewrote the introduction to the subsection on the derivative of $\operatorname{arcsec} x$.
- Section 3.10. Updated and improved related rates problem strategies, and correspondingly revised Examples 2-6.

Chapter 4

- Section 4.3. Added new Exercises 69-70.
- Section 4.4. Added new Exercises 107-108.
- Section 4.5. Improved the discussion of indeterminate forms.
- Expanded Example 1.
- Added new Exercises 19-20.
- Section 4.6. Updated and improved strategies for solving applied optimization problems.
- Added new Exercises 33-34.
- Section 4.8. Added Table 4.3 of integration formulas.

Chapter 5

- Section 5.1. The Midpoint Rule and the associated formula for calculating an integral numerically were given a more central role and used to introduce a numerical method.
- Section 5.3. New basic theory Exercise 89. Integrals of functions that differ at one point.
- Section 5.6. New Exercises 113-116. Compare areas using graphics and computation.

Chapter 6

Section 6.2. Discussion of cylinders in Example 1 clarified.

Chapter 7

- Clarified derivative formulas involving x versus those involving a differentiable function u.
- Section 7.1. Rewrote material on Logarithms and Laws on Exponents. Exercises 63-66 moved from Chapter 4. New Exercise 67 added.

Chapter 8

- Section 8.3. Clarified computing integrals involving powers of sines and cosines. Exercise 42 replaced. Exercises 51 and 52 added.
- Section 8.4. Ordering of exercises was updated.
- Section 8.5. Discussion of the method of partial fractions rewritten and clarified.
- Section 8.7. New subsection on the Midpoint Rule added. Discussion of Error Analysis expanded to include the Midpoint Rule. Exercises 1-10 expanded to include the Midpoint Rule.
- Section 8.8. Discussion of infinite limits of integration clarified. Material on Tests for Convergence and Divergence, including the Direct Comparison Test and the Limit Comparison Test, their proofs, and associated examples, all revised. New Exercises 69-80 added.

Chapter 9

- Section 9.2. Added Figure 9.9.
- Section 9.4. Added a new application of the logistic function showing its connection to Machine Learning and Neural Networks. Added New Exercises 21-22 on the Logistic Equation.

Chapter 10

- Section 10.2. Solution to Example 2 replaced. Solution to Example 8 replaced.
- Section 10.3. Solution to Example 5 revised.
- Section 10.5. Exercise 71 added.
- Section 10.6. Proof of Theorem 15 replaced. Discussion of Theorem 16 revised.
- Section 10.7. Discussion of absolute convergence added to the solution of Example 3. Figure 10.21 revised. New Exercises 40-41 added. Exercise 66 entirely rewritten.
- Section 10.8. Ordering of Exercises was revised. New Exercises 47 and 52 added.
- Section 10.9. Discussion of Taylor series between Examples 4 and 5 rewritten.
- Section 10.10. Exercise 9 replaced.
- Practice Exercises. New Exercises 45-46 added.
- Additional and Advanced Exercises. New Exercises 30-31 added.

Chapter 12

- Section 12.2. New subsection on Vectors in n Dimensions added, with corresponding new Figure 12.19, and new Exercises 60-65.
- Section 12.3. New subsection on The Dot Product of Two n-Dimensional Vectors added, with new Example 9, and new Exercises 53-56.
- Section 12.6. Discussion of cylinders revised.

Chapter 13

Section 13.5. New Exercises 1-2 and 5-6 added.

Chapter 14

- Section 14.2. Added a Composition Rule to Theorem 1 and expanded Example 1.
- Section 14.3. Rewrote the concept of differentiability for functions of several variables to improve clarity.
- Expanded Example 8.
- Section 14.4. Added new Exercises 62-63 on the chain rule with multiple variables.
- Section 14.5. Added a new subsection on gradients for Functions of More Than Three Variables.
- A new Example 7 illustrates a gradient of a 3-variable function.
- New Exercises 45-52 involve gradients of functions with several variables.
- Section 14.7. Added a definition of the Hessian matrix.
- Clarified Example 6.
- Section 14.8. Clarified the use of Lagrange Multipliers throughout, with a more explicit discussion of how to use them for finding maxima and minima.

Chapter 15

- Section 15.2. Added discussion of the properties of limits of iterated double integrals.
- Rewrote Exercises 1-8. Added new Exercises 19-26.
- Section 15.5. Added discussion of the properties of limits of iterated triple integrals. Revised and expanded Example 2.
- Section 15.7. Revised Figure 15.55 to clarify the shape of a spherical wedge involved in triple integration.

Appendices

Rewrote Appendix A. 7 to replace the prime notation with the subscript notation.

New Online Appendix B

B. 1 Determinants

B. 2 Extreme Values and Saddle Points for Functions of More than Two Variables

B. 3 The Method of Gradient Descent

This new appendix covers many topics relevant to students interested in Machine Learning and Neural Networks.

New Online Chapter 18—Complex Functions

This new online chapter gives an introduction to complex functions. Section 1 is an introduction to complex numbers and their operations. It replaces Appendix A.7. Section 2 covers limits and continuity for complex functions. Section 3 introduces complex derivatives and Section 4 the Cauchy-Riemann Equations. Section 5 develops the theory of complex series. Section 6 studies the standard functions such as $\sin z$ and $\log z$, and Section 7 ends the chapter by introducing the theory of conformal maps.

New Online Chapter 19—Fourier Series and Wavelets

This new online chapter introduces Fourier series, and then treats wavelets as a more advanced topic.

It has sections on
19.1 Periodic Functions
19.2 Summing Sines and Cosines
19.3 Vectors and Approximation in Three and More Dimensions 19.4 Approximation of Functions
19.5 Advanced Topic: The Haar System and Wavelets

Rigor The level of rigor is consistent with that of earlier editions. We continue to distinguish between formal and informal discussions and to point out their differences. Starting with a more intuitive, less formal approach helps students understand a new or difficult concept so they can then appreciate its full mathematical precision and outcomes. We pay attention to defining ideas carefully and to proving theorems appropriate for calculus students, while mentioning deeper or subtler issues they would study in a more advanced course. Our organization and distinctions between informal and formal discussions give the instructor a degree of flexibility in the amount and depth of coverage of the various topics. For example, while we do not prove the Intermediate Value Theorem or the Extreme Value Theorem for continuous functions on a closed finite interval, we do state these theorems precisely, illustrate their meanings in numerous examples, and use them to prove other important results. Furthermore, for those instructors who desire greater depth of coverage, in Appendix A. 6 we discuss the reliance of these theorems on the completeness of the real numbers.

Writing Exercises Writing exercises placed throughout the text ask students to explore and explain a variety of calculus concepts and applications. In addition, the end of each chapter contains a list of questions for students to review and summarize what they have learned. Many of these exercises make good writing assignments.

End-of-Chapter Reviews and Projects In addition to problems appearing after each section, each chapter culminates with review questions, practice exercises covering the entire chapter, and a series of Additional and Advanced Exercises with more challenging or synthesizing problems. Most chapters also include descriptions of several Technology Application Projects that can be worked by individual students or groups of students over a longer period of time. These projects require the use of Mathematica or Maple, along with pre-made files that are available for download within MyLab Math.

Writing and Applications This text continues to be easy to read, conversational, and mathematically rich. Each new topic is motivated by clear, easy-to-understand examples and is then reinforced by its application to real-world problems of immediate interest to students. A hallmark of this book has been the application of calculus to science and engineering. These applied problems have been updated, improved, and extended continually over the last several editions.

Technology In a course using the text, technology can be incorporated according to the taste of the instructor. Each section contains exercises requiring the use of technology; these are marked with a T if suitable for calculator or computer use, or they are labeled Computer Explorations if a computer algebra system (CAS, such as Maple or Mathematica) is required.

MyLab Math Resources for Success

MyLab ${ }^{\text {TM }}$ Math is available to accompany Pearson's market-leading text options, including Thomas' Calculus: Early Transcendentals, 15th Edition (access code required).

MyLab is the teaching and learning platform that empowers you to reach every student. MyLab Math combines trusted author content—including full eText and assessment with immediate feedback-with digital tools and a flexible platform to personalize the learning experience and improve results for each student.

MyLab Math supports all learners, regardless of their ability and background, to provide an equal opportunity for success. Accessible resources support learners for a more equitable experience no matter their abilities. And options to personalize learning and address individual gaps help to provide each learner with the specific resources they need to achieve success.

Student Resources

Pearson eText-The eText is "reflowable" to adapt to use on tablets and smartphones. You can insert your own highlights, notes, and bookmarks. It is also fully accessible using screen-readers. Download the Pearson+ app to access your eText on your smartphone or tablet anytime-even offline.

Study Slides-PowerPoint slides featuring key ideas and examples are available for students within the Video \& Resource Library. These slides are compatible with screen readers.

Address Under-Preparedness-Each student learns at a different pace. Personalized learning pinpoints the precise areas where each student needs practice, giving all students the support they need-when and where they need it-to be successful.

New! Integrated Review can be used for just-in-time prerequisite review.

- Integrated Review at the chapter level provides a Skills Check assessment to pinpoint which prerequisite topics, if any, students need to review.
- Students who require additional review proceed to a personalized homework assignment to remediate.
- Integrated Review videos provide additional instruction.

Instructors that prefer to review at the section level can assign the Enhanced Assignments instead.

Personalized Homework-With Personalized Homework, students take a quiz or test and receive a subsequent homework assignment that is personalized based on their performance. This way, students can focus on just the topics they have not yet mastered.
Motivate Your Students—Students are motivated to succeed when they're engaged in the learning experience and understand the relevance and power of math.

Interactive Figures bring mathematical concepts to life, helping students see the concepts through directed explorations and purposeful manipulation. Many of the instructional videos that accompany the text include Interactive Figures to teach key concepts. These figures are assignable in MyLab Math and encourage active learning, critical thinking, and conceptual understanding. The figures were created by Marc Renault (Shippensburg University), Steve Phelps (University of Cincinnati), Kevin Hopkins (Southwest Baptist University), and Tim Brzezinski (Southington High School, CT).

- Instructional videos-Hundreds of videos are available as learning aids within exercises and for self-study under the Video and Resource Library.

Other student resources include:

- Student's Solutions Manual The Student's Solutions Manual provides detailed worked-out solutions to the odd-numbered exercises in Thomas' Calculus: Early Transcendentals. Available in MyLab Math.
- Just-In-Time Algebra and Trigonometry for Early Transcendentals Calculus, Fourth Edition ISBN: 978-0-321-67103-5

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and Ronald I. Brent is designed to bolster these skills while students study calculus. As students make their way through calculus, this brief supplementary text is with them every step of the way, showing them the necessary algebra or trigonometry topics and pointing out potential problem spots. The easy-to-use table of contents arranges topics in the order in which students will need them as they study calculus. This supplement is available in print only.

Instructor Resources

Your course is unique. So, whether you'd like to build your own assignments, teach multiple sections, or set prerequisites, MyLab gives you the flexibility to easily create your course to fit your needs.
Instructor's eText—A page-for-page eText is available within the Instructor Resources section of MyLab Math.
Pre-Built Assignments are designed to maximize students' performance. All assignments are fully editable to make your course your own.
New! Video Assignments featuring short videos with corresponding MyLab Math exercises are available for each section of the textbook. These editable assignments are especially helpful for online or "flipped" classes, where some or all the learning takes place independently.

Enhanced Assignments—These section-level assignments have three unique properties:

1. They help keep skills fresh with spaced practice of previously learned concepts.
2. Learning aids are strategically turned off for some exercises to ensure students understand how to work the exercises independently.
3. They contain personalized prerequisite skills exercises for gaps identified in the chapter-level Skills Check Quiz.

MyLab Math Question Library is correlated to the exercises in the text, reflecting the authors' approach and learning style. They regenerate algorithmically to give students unlimited opportunity for practice and mastery. Below are a few exercise types available to assign:

V New! GeoGebra Exercises are gradable graphing and computational exercises that help students demonstrate their understanding. They enable students to interact directly with the graph in a manner that reflects how students would graph on paper.

- Nearly 100 More! Setup \& Solve Exercises require students to first describe how they will set up and approach the problem. This reinforces conceptual understanding of the process applied in approaching the problem, promotes long-term retention of the skill, and mirrors what students will be expected to do on a test. This new exercise type was widely praised by users of the 14th edition, so more were added to the 15 th edition.
- Conceptual Question Library focuses on deeper, theoretical understanding of the key concepts in calculus. These questions were written by faculty at Cornell University under a National Science Foundation grant and are also assignable through Learning Catalytics.

Learning Catalytics—With Learning Catalytics, you'll hear from every student when it matters most. You pose a variety of questions in class (choosing from pre-loaded questions or your own) that help students recall ideas, apply concepts, and develop critical-thinking skills. Your students respond using their own smartphones, tablets, or laptops.

Performance Analytics enable instructors to see and analyze student performance across multiple courses. Based on their current course progress, individuals' performance is identified above, at, or below expectations through a variety of graphs and visualizations.

Now included with Performance Analytics, Early Alerts use predictive analytics to identify struggling students-even if their assignment scores are not a cause for concern.

In both Performance Analytics and Early Alerts, instructors can email students individually or by group to provide feedback.

Accessibility-Pearson works continuously to ensure our products are as accessible as possible to all students. Currently, we are working toward achieving WCAG 2.0 AA for our existing products (2.1 AA for future products) and Section 508 standards, as expressed in the Pearson Guidelines for Accessible Educational Web Media (https://www.pearson .com/us/accessibility.html).

Other instructor resources include:

- Instructor's Solutions Manual-The Instructor's Solutions Manual provides complete worked-out solutions for all exercises in Thomas' Calculus: Early Transcendentals. It can be downloaded from within MyLab Math or from Pearson's online catalog at www.pearson.com.
- PowerPoint Lecture Slides feature editable lecture slides written and designed specifically for this text, including figures and examples.
- TestGen enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same questions or test with the click of a button. Instructors can also modify test bank questions or add new questions. The software and test bank are available for download at www.pearson.com.
- Technology Manuals and Projects

Maple Manual and Projects
 Mathematica Manual and Projects
 TI-Graphing Calculator Manual

These manuals and projects cover Maple 2021, Mathematica 12, and TI-84 Plus and TI-89. Each manual provides detailed guidance for integrating a specific software package or graphing calculator throughout the course, including syntax and commands. The projects include instructions and ready-made application files for Maple and Mathematica. Available to download within MyLab Math.

Learn more at pearson.com/mylab/math.

We would like to express our thanks to the people who made many valuable contributions to this edition as it developed through its various stages.

Accuracy Checkers

Jennifer Blue
Roger Lipsett
Patricia Nelson
Thomas Wegleitner

Reviewers for the Fifteenth Edition

Philip Veer	Johnson County Community College
Kent Kast	Campion Academy
Richard Rupp	Del Mar College
Brian Albright	Concordia University
Sara Weiss	Dallas College
Shawn Chiappetta	University of Sioux Falls
Marshall Ransom	Georgia Southern University

MyLab Reviewers

Myrna La Rosa	Triton College
Corlis Robe	East Tennessee State University
Tawfik Haj	San Jacinto College
Richard D Rupp	Del Mar College
Shawn Chiappetta	University of Sioux Falls
Eduardo Morales	El Camino College
Gail T Illich	McClennan Community College
Janna Liberant	Rockland Community College
Brenda K Edmonds	Johnson County Community College
Jeyakumar Ratnaswamy	New Jersey Institute of Technology

We wish to thank the many people at Pearson who have contributed to the success of this book. We appreciate the efforts of the production, design, manufacturing, marketing, and sales departments. We are additionally grateful to Jennifer Blue, Roger Lipsett, Patricia Nelson, and Tom Wegleitner for their careful and thorough checking for accuracy. Our sincere thanks go to Sharon Cahill from Straive for her assistance throughout the revision of the book. Content Producer Rachel Reeve did a fantastic job keeping the book on schedule. The authors wish to extend thanks to editor, Evan St. Cyr.

If you have any comments or suggestions, we would like to hear from you.
Joel Hass
Christopher Heil
Przemyslaw Bogacki

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity, depth, and breadth of all learners' lived experiences.

We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, sex, sexual orientation, socioeconomic status, ability, age, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational content accurately reflects the histories and lived experiences of the learners we serve.
- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content prompts deeper discussions with students and motivates them to expand their own learning (and worldview).

Accessibility

We are also committed to providing products that are fully accessible to all learners. As per Pearson's guidelines for accessible educational Web media, we test and retest the capabilities of our products against the highest standards for every release, following the WCAG guidelines in developing new products for copyright year 2022 and beyond.

You can learn more about Pearson's commitment to accessibility at https://www.pearson.com/us/accessibility.html

Contact Us

While we work hard to present unbiased, fully accessible content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html
For accessibility-related issues, such as using assistive technology with Pearson products, alternative text requests, or accessibility documentation, email the Pearson Disability Support team at disability.support@pearson.com

This page intentionally left blank

Functions

OVERVIEW In this chapter we review what functions are and how they are visualized as graphs, how they are combined and transformed, and ways they can be classified.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be represented by an equation, a graph, a numerical table, or a verbal description; we will use all four representations throughout this text. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The interest paid on a cash investment depends on the length of time the investment is held. The area of a circle depends on the radius of the circle. The distance an object travels depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another variable quantity, which we often call x. We say that " y is a function of x " and write this symbolically as

$$
y=f(x) \quad(" y \text { equals } f \text { of } x ") .
$$

The symbol f represents the function, the letter x is the independent variable representing the input value to f, and y is the dependent variable or output value of f at x.

DEFINITION A function f from a set D to a set Y is a rule that assigns a single value $f(x)$ in Y to each x in D.

A rule that assigns more than one value to an input x, such as the rule that assigns to a positive number both the positive and negative square roots of the number, does not describe a function.

The set D of all possible input values is called the domain of the function. The domain of f will sometimes be denoted by $D(f)$. The set of all output values $f(x)$ as x varies throughout D is called the range of the function. The range might not include every element in the set Y. The domain and range of a function can be any sets of objects, but often in calculus they are sets of real numbers interpreted as points of a coordinate line. (In Chapters 13-16, we will encounter functions for which the elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value from the input variable. For instance, the equation $A=\pi r^{2}$ is a rule that calculates the area A of a circle from its radius r. When we define a function f with a formula $y=f(x)$ and the domain is not stated explicitly or restricted by context, the domain is assumed to be

FIGURE 1.1 A diagram showing a function as a kind of machine.

FIGURE 1.2 A function from a set D to a set Y assigns a unique element of Y to each element in D.
the largest set of real x-values for which the formula gives real y-values. This is called the natural domain of f. If we want to restrict the domain in some way, we must say so. The domain of $y=x^{2}$ is the entire set of real numbers. To restrict the domain of the function to, say, positive values of x, we would write " $y=x^{2}, x>0$."

Changing the domain to which we apply a formula usually changes the range as well. The range of $y=x^{2}$ is $[0, \infty)$. The range of $y=x^{2}, x \geq 2$, is the set of all numbers obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix A.1), the range is $\left\{x^{2} \mid x \geq 2\right\}$ or $\{y \mid y \geq 4\}$ or $[4, \infty)$.

When the range of a function is a set of real numbers, the function is said to be real-valued. The domains and ranges of most real-valued functions we consider are intervals or combinations of intervals. Sometimes the range of a function is not easy to find.

A function f is like a machine that produces an output value $f(x)$ in its range whenever we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an example of a function as a machine. For instance, whenever you enter a nonnegative number x and press the \sqrt{x} key, the calculator gives an output value (the square root of x).

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associates to an element of the domain D a single element in the set Y. In Figure 1.2, the arrows indicate that $f(a)$ is associated with $a, f(x)$ is associated with x, and so on. Notice that a function can have the same output value for two different input elements in the domain (as occurs with $f(a)$ in Figure 1.2), but each input element x is assigned a single output value $f(x)$.

EXAMPLE 1 Verify the natural domains and associated ranges of some simple functions. The domains in each case are the values of x for which the formula makes sense.

Function	Domain (\boldsymbol{x})	Range (y)
$y=x^{2}$	$(-\infty, \infty)$	$[0, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y=\sqrt{4-x}$	$(-\infty, 4]$	$[0, \infty)$
$y=\sqrt{1-x^{2}}$	$[-1,1]$	$[0,1]$

Solution The formula $y=x^{2}$ gives a real y-value for any real number x, so the domain is $(-\infty, \infty)$. The range of $y=x^{2}$ is $[0, \infty)$ because the square of any real number is nonnegative and every nonnegative number y is the square of its own square root: $y=(\sqrt{y})^{2}$.

The formula $y=1 / x$ gives a real y-value for every x except $x=0$. For consistency in the rules of arithmetic, we cannot divide any number by zero. The range of $y=1 / x$, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since $y=1 /(1 / y)$. That is, for $y \neq 0$ the number $x=1 / y$ is the input that is assigned to the output value y.

The formula $y=\sqrt{x}$ gives a real y-value only if $x \geq 0$. The range of $y=\sqrt{x}$ is $[0, \infty)$ because every nonnegative number is some number's square root (namely, it is the square root of its own square).

In $y=\sqrt{4-x}$, the quantity $4-x$ cannot be negative. That is, $4-x \geq 0$, or $x \leq 4$. The formula gives nonnegative real y-values for all $x \leq 4$. The range of $\sqrt{4-x}$ is $[0, \infty)$, the set of all nonnegative numbers.

The formula $y=\sqrt{1-x^{2}}$ gives a real y-value for every x in the closed interval from -1 to 1 . Outside this domain, $1-x^{2}$ is negative and its square root is not a real number. The values of $1-x^{2}$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1-x^{2}}$ is $[0,1]$.

x	$\boldsymbol{y}=\boldsymbol{x}^{2}$
-2	4
-1	1
0	0
1	1
$\frac{3}{2}$	$\frac{9}{4}$
2	4

FIGURE 1.5 Graph of the function in Example 2.

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

$$
\{(x, f(x)) \mid x \in D\}
$$

The graph of the function $f(x)=x+2$ is the set of points with coordinates (x, y) for which $y=x+2$. Its graph is the straight line sketched in Figure 1.3.

The graph of a function f is a useful picture of its behavior. If (x, y) is a point on the graph, then $y=f(x)$ is the height of the graph above (or below) the point x. The height may be positive or negative, depending on the sign of $f(x)$ (Figure 1.4).

FIGURE 1.3 The graph of $f(x)=x+2$ is the set of points (x, y) for which y has the value $x+2$.

EXAMPLE 2 Graph the function $y=x^{2}$ over the interval $[-2,2]$.
Solution Make a table of $x y$-pairs that satisfy the equation $y=x^{2}$. Plot the points (x, y) whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) through the plotted points (see Figure 1.5).

How do we know that the graph of $y=x^{2}$ doesn't look like one of these curves?

To find out, we could plot more points. But how would we then connect them? The basic question still remains: How do we know for sure what the graph looks like between the points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, we will have to settle for plotting points and connecting them as best we can.

Time	Pressure
0.00091	-0.080
0.00108	0.200
0.00125	0.480
0.00144	0.693
0.00162	0.816
0.00180	0.844
0.00198	0.771
0.00216	0.603
0.00234	0.368
0.00253	0.099
0.00271	-0.141
0.00289	-0.309
0.00307	-0.348
0.00325	-0.248
0.00344	-0.041
0.00362	0.217
0.00379	0.480
0.00398	0.681
0.00416	0.810
0.00435	0.827
0.00453	0.749
0.00471	0.581
0.00489	0.346
0.00507	0.077
0.00525	-0.320
0.00543	-0.354
0.00562	
0.00579	0.035
0.00598	

Representing a Function Numerically

A function may be represented algebraically by a formula and visually by a graph (Example 2). Another way to represent a function is numerically, through a table of values. From an appropriate table of values, a graph of the function can be obtained using the method illustrated in Example 2, possibly with the aid of a computer. The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data associated with Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note produced by a tuning fork. The table provides a representation of the pressure function (in micropascals) over time. If we first make a scatterplot and then draw a smooth curve that approximates the data points (t, p) from the table, we obtain the graph shown in the figure.

FIGURE 1.6 A smooth curve approximating the plotted points gives a graph of the pressure function represented by the accompanying tabled data (Example 3).

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function f can have only one value $f(x)$ for each x in its domain, so no vertical line can intersect the graph of a function at more than one point. If a is in the domain of the function f, then the vertical line $x=a$ will intersect the graph of f at the single point $(a, f(a))$.

A circle cannot be the graph of a function, since some vertical lines intersect the circle twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of x, namely the upper semicircle defined by the function $f(x)=\sqrt{1-x^{2}}$ and the lower semicircle defined by the function $g(x)=-\sqrt{1-x^{2}}$ (Figures 1.7 b and 1.7c).

(a) $x^{2}+y^{2}=1$

(b) $y=\sqrt{1-x^{2}}$

(c) $y=-\sqrt{1-x^{2}}$

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of the function $f(x)=\sqrt{1-x^{2}}$. (c) The lower semicircle is the graph of the function $g(x)=-\sqrt{1-x^{2}}$.

FIGURE 1.8 The absolute value function has domain $(-\infty, \infty)$ and range $[0, \infty)$.

FIGURE 1.9 To graph the function $y=f(x)$ shown here, we apply different formulas to different parts of its domain (Example 4).

FIGURE 1.10 The graph of the greatest integer function $y=\lfloor x\rfloor$ lies on or below the line $y=x$, so it provides an integer floor for x (Example 5).

FIGURE 1.11 The graph of the least integer function $y=\lceil x\rceil$ lies on or above the line $y=x$, so it provides an integer ceiling for x (Example 6).

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts of its domain. One example is the absolute value function

$$
|x|=\left\{\begin{aligned}
& x, \quad x \geq 0 \text { First formula } \\
&-x, \quad x<0 \quad \text { Second formula }
\end{aligned}\right.
$$

whose graph is given in Figure 1.8. The right-hand side of the equation means that the function equals x if $x \geq 0$, and equals $-x$ if $x<0$. Piecewise-defined functions often arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4 The function

$$
f(x)=\left\{\begin{array}{cll}
-x, & x<0 & \text { First formula } \\
x^{2}, & 0 \leq x \leq 1 & \text { Second formula } \\
1, & x>1 & \text { Third formula }
\end{array}\right.
$$

is defined on the entire real line but has values given by different formulas, depending on the position of x. The values of f are given by $y=-x$ when $x<0, y=x^{2}$ when $0 \leq x \leq 1$, and $y=1$ when $x>1$. The function, however, is just one function whose domain is the entire set of real numbers (Figure 1.9).

EXAMPLE 5 The function whose value at any number x is the greatest integer less than or equal to x is called the greatest integer function or the integer floor function. It is denoted $\lfloor x\rfloor$. Figure 1.10 shows the graph. Observe that

$$
\begin{array}{lll}
\lfloor 2.4\rfloor=2, & \lfloor 1.9\rfloor=1, & \lfloor 0\rfloor=0, \\
\lfloor 2\rfloor=2, & \lfloor 0.2\rfloor=0, & \lfloor-0.3\rfloor=-1, \\
\lfloor-2\rfloor=-2
\end{array}
$$

EXAMPLE 6 The function whose value at any number x is the smallest integer greater than or equal to x is called the least integer function or the integer ceiling function. It is denoted $\lceil x\rceil$. Figure 1.11 shows the graph. For positive values of x, this function might represent, for example, the cost of parking x hours in a parking lot that charges $\$ 1$ for each hour or part of an hour.

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the function is increasing. If the graph descends or falls as you move from left to right, the function is decreasing.

DEFINITIONS Let f be a function defined on an interval I and let x_{1} and x_{2} be two distinct points in I.

1. If $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then f is said to be increasing on I.
2. If $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then f is said to be decreasing on I.

It is important to realize that the definitions of increasing and decreasing functions must be satisfied for every pair of points x_{1} and x_{2} in I with $x_{1}<x_{2}$. Because we use the inequality $<$ to compare the function values, instead of \leq, it is sometimes said that f is strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or infinite (unbounded).

FIGURE 1.12 (a) The graph of $y=x^{2}$ (an even function) is symmetric about the y-axis. (b) The graph of $y=x^{3}$ (an odd function) is symmetric about the origin.

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on $(-\infty, 0)$ and increasing on $(0,1)$. The function is neither increasing nor decreasing on the interval $(1, \infty)$ because the function is constant on that interval, and hence the strict inequalities in the definition of increasing or decreasing are not satisfied on $(1, \infty)$.

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have special symmetry properties.

DEFINITIONS A function $y=f(x)$ is an

$$
\begin{array}{ll}
\text { even function of } \boldsymbol{x} & \text { if } f(-x)=f(x), \\
\text { odd function of } \boldsymbol{x} & \text { if } f(-x)=-f(x),
\end{array}
$$

for every x in the function's domain.

The names even and odd come from powers of x. If y is an even power of x, as in $y=x^{2}$ or $y=x^{4}$, it is an even function of x because $(-x)^{2}=x^{2}$ and $(-x)^{4}=x^{4}$. If y is an odd power of x, as in $y=x$ or $y=x^{3}$, it is an odd function of x because $(-x)^{1}=-x$ and $(-x)^{3}=-x^{3}$.

The graph of an even function is symmetric about the \boldsymbol{y}-axis. Since $f(-x)=f(x)$, a point (x, y) lies on the graph if and only if the point $(-x, y)$ lies on the graph (Figure 1.12a). A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since $f(-x)=-f(x)$, a point (x, y) lies on the graph if and only if the point $(-x,-y)$ lies on the graph (Figure 1.12 b). Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin leaves the graph unchanged.

Notice that each of these definitions requires that both x and $-x$ be in the domain of f.

EXAMPLE 8 Here are several functions illustrating the definitions.
$f(x)=x^{2} \quad$ Even function: $(-x)^{2}=x^{2}$ for all x; symmetry about y-axis. So $f(-3)=9=f(3)$. Changing the sign of x does not change the value of an even function.
$f(x)=x^{2}+1 \quad$ Even function: $(-x)^{2}+1=x^{2}+1$ for all x; symmetry about y-axis (Figure 1.13a).

(a)

(b)

FIGURE 1.13 (a) When we add the constant term 1 to the function $y=x^{2}$, the resulting function $y=x^{2}+1$ is still even and its graph is still symmetric about the y-axis. (b) When we add the constant term 1 to the function $y=x$, the resulting function $y=x+1$ is no longer odd, since the symmetry about the origin is lost. The function $y=x+1$ is also not even (Example 8).

