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Thomas’ Calculus: Early Transcendentals, Fifteenth Edition, continues its tradition of 
clarity and precision in calculus with a modern update to the popular text. The authors 
have worked diligently to add exercises, revise figures and narrative for clarity, and update 
many applications to modern topics. Thomas’ Calculus remains a modern and robust intro-
duction to calculus, focusing on developing conceptual understanding of the underlying 
mathematical ideas. This text supports a calculus sequence typically taken by students 
in STEM fields over several semesters. Intuitive and precise explanations, thoughtfully 
chosen examples, superior figures, and time-tested exercise sets are the foundation of this 
text. We continue to improve this text in keeping with shifts in both the preparation and the 
goals of today’s students, and in the applications of calculus to a changing world.

As Advanced Placement Calculus continues to grow in popularity for high school 
students, many instructors have communicated mixed reviews of the benefit for today’s 
university and community college students. Some instructors report receiving students 
with an overconfidence in their computational abilities coupled with underlying gaps in 
algebra and trigonometry mastery, as well as poor conceptual understanding. In this text, 
we seek to meet the needs of the increasingly varied population in the calculus sequence. 
We have taken care to provide enough review material (in the text and appendices), 
detailed solutions, and a variety of examples and exercises, to support a complete under-
standing of calculus for students at varying levels. Additionally, the MyLab Math course 
that accompanies the text provides significant support to meet the needs of all students. 
Within the text, we present the material in a way that supports the development of mathe-
matical maturity, going beyond memorizing formulas and routine procedures, and we 
show students how to generalize key concepts once they are introduced. References are 
made throughout, tying new concepts to related ones that were studied earlier. After 
studying calculus from Thomas, students will have developed problem-solving and rea-
soning abilities that will serve them well in many important aspects of their lives. 
Mastering this beautiful and creative subject, with its many practical applications across 
so many fields, is its own reward. But the real gifts of studying calculus are acquiring the 
ability to think logically and precisely; understanding what is defined, what is assumed, 
and what is deduced; and learning how to generalize conceptually. We intend this book to 
encourage and support those goals.

Preface



x Preface

New to This Edition

We welcome to this edition a new coauthor, Przemyslaw Bogacki from Old Dominion 
University. Przemek joined the team for the 4th edition of University Calculus and now 
joins the Thomas’ Calculus team. Przemek brings a keen eye for details as well as sig
nificant experience in MyLab Math. Przemek has diligently reviewed every exercise and 
solution in MyLab Math for mathematical accuracy, fidelity with text methods, and effec
tiveness for students. He has also recommended nearly 100 new Setup & Solve exercises 
and improved the sample assignments in MyLab. Przemek has also written the new appen
dix on Optimization covering determinants, extreme values, and gradient descent.

The most significant update to this 15th edition includes new online chapters on 
Complex Functions, Fourier Series and Wavelets, and the new appendix on Optimization. 
These chapters can provide material for students interested in more advanced topics. The 
details are outlined below in the chapter descriptions.

We have also made the following updates:

• Many updated graphics and figures to bring out clear visualization and mathematical 
correctness.

• Many wording clarifications and revisions.

• Many instruction clarifications for exercises, such as suggesting where the use of a  
calculator may be needed.

• Notation of inverse trig functions favoring arcsin notation over sin 1− , etc.

New to MyLab Math

Pearson has continued to improve the general functionality of MyLab Math since the pre
vious edition. Ongoing improvements to the grading algorithms, along with the develop
ment of MyLab Math for our differential equations courses allows for more sophisticated 
acceptance of generic constants and better parsing of mathematical expressions.

• The full suite of interactive figures has been updated for accessibility meeting WCAG 
standards. The 180 figures are designed to be used in lecture as well as by students 
independently. The figures are editable using the freely available GeoGebra software. 
The figures were created by Marc Renault (Shippensburg University), Kevin Hopkins 
(Southwest Baptist University), Steve Phelps (University of Cincinnati), and Tim 
Brzezinski (Southington High School, CT).

• New! GeoGebra Exercises are gradable graphing and computational exercises that help 
students demonstrate their understanding. They enable students to interact directly with 
the graph in a manner that reflects how students would graph on paper.

• Nearly 100 additional Setup & Solve exercises have been created, selected by author 
Przemyslaw Bogacki. These exercises are designed to focus students on the process of 
problem solving by requiring them to set up their equations before moving on to the 
solution.

• Integrated Review quizzes and personalized homework are now built into all MyLab 
Math courses. No separate Integrated Review course is required.

• New online chapters and sections have exercises available, including exercises for the 
complex numbers and functions that many users have asked for.
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Chapter 1

• Section 1.2. Revised Example 4 to clarify the distinction 
between vertical and horizontal scaling of a graph.

• Section 1.3. Added new Figure 1.46, illustrating a geometric 
proof of the angle sum identities.

Chapter 2

• Section 2.2. New Example 11, illustrating the use of the 
Sandwich Theorem, with corresponding new Figure 2.14.

• Section 2.4. New subsection on “Limits at Endpoints of an 
Interval” added. New Example 2 added, illustrating limits at 
a boundary point of an interval.

• Section 2.5. Exercises 41–45 on limits involving trigonometric 
functions moved from Chapter 3.

• Additional and Advanced Exercises. Exercises 31–40 
on limits involving trigonometric functions moved from  
Chapter 3.

Chapter 3

• Section 3.8. Revised Figure 3.36 illustrating the relationship 
between slopes of graphs of inverse functions.

• Updated differentiation formulas involving exponential and 
logarithmic functions.

• Expanded Example 5.

• Expanded Example 7 to clarify the computation of the  
derivative of x .x

• Added new Exercises 11–14 involving the derivatives of 
inverse functions.

• Section 3.9. Updated differentiation formulas involving 
inverse trigonometric functions.

• Added new Example 3 to illustrate differentiating a compo-
sition involving the arctangent function.

• Rewrote the introduction to the subsection on the derivative 
of arcsec x.

• Section 3.10. Updated and improved related rates problem 
strategies, and correspondingly revised Examples 2–6.

Chapter 4

• Section 4.3. Added new Exercises 69–70.

• Section 4.4. Added new Exercises 107–108.

• Section 4.5. Improved the discussion of indeterminate forms.

• Expanded Example 1.

• Added new Exercises 19–20.

• Section 4.6. Updated and improved strategies for solving 
applied optimization problems.

• Added new Exercises 33–34.

• Section 4.8. Added Table 4.3 of integration formulas.

Chapter 5

• Section 5.1. The Midpoint Rule and the associated formula 
for calculating an integral numerically were given a more 
central role and used to introduce a numerical method.

• Section 5.3. New basic theory Exercise 89. Integrals of func-
tions that differ at one point.

• Section 5.6. New Exercises 113–116. Compare areas using 
graphics and computation.

Chapter 6

Section 6.2. Discussion of cylinders in Example 1 clarified.

Chapter 7

• Clarified derivative formulas involving x versus those involv-
ing a differentiable function u.

• Section 7.1. Rewrote material on Logarithms and Laws on  
Exponents. Exercises 63–66 moved from Chapter 4. New 
Exer cise 67 added.

Chapter 8

• Section 8.3. Clarified computing integrals involving powers 
of sines and cosines. Exercise 42 replaced. Exercises 51 and 
52 added.

• Section 8.4. Ordering of exercises was updated.

• Section 8.5. Discussion of the method of partial fractions 
rewritten and clarified.

• Section 8.7. New subsection on the Midpoint Rule added. 
Discussion of Error Analysis expanded to include the Mid-
point Rule. Exercises 1–10 expanded to include the Mid-
point Rule.

• Section 8.8. Discussion of infinite limits of integration clari-
fied. Material on Tests for Convergence and Divergence, 
including the Direct Comparison Test and the Limit Com-
parison Test, their proofs, and associated examples, all 
revised. New Exercises 69–80 added.

Chapter 9

• Section 9.2. Added Figure 9.9.

• Section 9.4. Added a new application of the logistic function 
showing its connection to Machine Learning and Neural Net-
works. Added New Exercises 21–22 on the Logistic Equation.

Content Enhancements
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Chapter 10

• Section 10.2. Solution to Example 2 replaced. Solution to 
Example 8 replaced.

• Section 10.3. Solution to Example 5 revised.

• Section 10.5. Exercise 71 added.

• Section 10.6. Proof of Theorem 15 replaced. Discussion of 
Theorem 16 revised.

• Section 10.7. Discussion of absolute convergence added to 
the solution of Example 3. Figure 10.21 revised. New Exer-
cises 40–41 added. Exercise 66 entirely rewritten.

• Section 10.8. Ordering of Exercises was revised. New Exer-
cises 47 and 52 added.

• Section 10.9. Discussion of Taylor series between Examples 4 
and 5 rewritten.

• Section 10.10. Exercise 9 replaced.

• Practice Exercises. New Exercises 45–46 added.

• Additional and Advanced Exercises. New Exercises 30–31 
added.

Chapter 12

• Section 12.2. New subsection on Vectors in n Dimensions 
added, with corresponding new Figure 12.19, and new Exer-
cises 60–65.

• Section 12.3. New subsection on The Dot Product of Two 
n-Dimensional Vectors added, with new Example 9, and new 
Exercises 53–56.

• Section 12.6. Discussion of cylinders revised.

Chapter 13

Section 13.5. New Exercises 1–2 and 5–6 added.

Chapter 14

• Section 14.2. Added a Composition Rule to Theorem 1 and 
expanded Example 1.

• Section 14.3. Rewrote the concept of differentiability for 
functions of several variables to improve clarity.

• Expanded Example 8.

• Section 14.4. Added new Exercises 62–63 on the chain rule 
with multiple variables.

• Section 14.5. Added a new subsection on gradients for Func-
tions of More Than Three Variables.

• A new Example 7 illustrates a gradient of a 3-variable  
function.

• New Exercises 45–52 involve gradients of functions with 
several variables.

• Section 14.7. Added a definition of the Hessian matrix.

• Clarified Example 6.

• Section 14.8. Clarified the use of Lagrange Multipliers 
throughout, with a more explicit discussion of how to use 
them for finding maxima and minima.

Chapter 15

• Section 15.2. Added discussion of the properties of limits of 
iterated double integrals.

• Rewrote Exercises 1–8. Added new Exercises 19–26.

• Section 15.5. Added discussion of the properties of limits of 
iterated triple integrals. Revised and expanded Example 2.

• Section 15.7. Revised Figure 15.55 to clarify the shape of a 
spherical wedge involved in triple integration.

Appendices 

Rewrote Appendix A.7 to replace the prime notation with the 
subscript notation.

New Online Appendix B

B.1 Determinants
B.2  Extreme Values and Saddle Points for Functions of More 

than Two Variables
B.3 The Method of Gradient Descent

This new appendix covers many topics relevant to students 
interested in Machine Learning and Neural Networks.

New Online Chapter 18—Complex Functions 
This new online chapter gives an introduction to complex func-
tions. Section 1 is an introduction to complex numbers and their 
operations. It replaces Appendix A.7. Section 2 covers limits 
and continuity for complex functions. Section 3 introduces com-
plex derivatives and Section 4 the Cauchy-Riemann Equations. 
Section 5 develops the theory of complex series. Section 6 studies 
the standard functions such as sin z and Log z, and Section 7 ends 
the chapter by introducing the theory of conformal maps.

New Online Chapter 19—Fourier Series and Wavelets 
This new online chapter introduces Fourier series, and then 
treats wavelets as a more advanced topic.

It has sections on

19.1 Periodic Functions
19.2 Summing Sines and Cosines
19.3 Vectors and Approximation in Three and More Dimensions
19.4 Approximation of Functions
19.5 Advanced Topic: The Haar System and Wavelets
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Continuing Features

Rigor The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. Starting 
with a more intuitive, less formal approach helps students understand a new or difficult con-
cept so they can then appreciate its full mathematical precision and outcomes. We pay atten-
tion to defining ideas carefully and to proving theorems appropriate for calculus students, 
while mentioning deeper or subtler issues they would study in a more advanced course. Our 
organization and distinctions between informal and formal discussions give the instructor a 
degree of flexibility in the amount and depth of coverage of the various topics. For example, 
while we do not prove the Intermediate Value Theorem or the Extreme Value Theorem for 
continuous functions on a closed finite interval, we do state these theorems precisely, illus-
trate their meanings in numerous examples, and use them to prove other important results. 
Furthermore, for those instructors who desire greater depth of coverage, in Appendix A.6 we 
discuss the reliance of these theorems on the completeness of the real numbers.

Writing Exercises Writing exercises placed throughout the text ask students to explore 
and explain a variety of calculus concepts and applications. In addition, the end of each 
chapter contains a list of questions for students to review and summarize what they have 
learned. Many of these exercises make good writing assignments.

End-of-Chapter Reviews and Projects In addition to problems appearing after each 
section, each chapter culminates with review questions, practice exercises covering the 
entire chapter, and a series of Additional and Advanced Exercises with more challenging 
or synthesizing problems. Most chapters also include descriptions of several Technology 
Application Projects that can be worked by individual students or groups of students over 
a longer period of time. These projects require the use of Mathematica or Maple, along 
with pre-made files that are available for download within MyLab Math.

Writing and Applications This text continues to be easy to read, conversational, and 
mathematically rich. Each new topic is motivated by clear, easy-to-understand examples 
and is then reinforced by its application to real-world problems of immediate interest to 
students. A hallmark of this book has been the application of calculus to science and engi-
neering. These applied problems have been updated, improved, and extended continually 
over the last several editions.

Technology In a course using the text, technology can be incorporated according to the 
taste of the instructor. Each section contains exercises requiring the use of technology; 
these are marked with a T if suitable for calculator or computer use, or they are labeled 
Computer Explorations if a computer algebra system (CAS, such as Maple or Math-
ematica) is required.

MyLab Math Resources for Success

MyLab™ Math is available to accompany Pearson’s market-leading text options, includ-
ing Thomas’ Calculus: Early Transcendentals, 15th Edition (access code required).

MyLab is the teaching and learning platform that empowers you to reach every  
student. MyLab Math combines trusted author content—including full eText and assess-
ment with immediate feedback—with digital tools and a flexible platform to personalize 
the learning experience and improve results for each student.

MyLab Math supports all learners, regardless of their ability and background, to provide 
an equal opportunity for success. Accessible resources support learners for a more equitable 
experience no matter their abilities. And options to personalize learning and address individ-
ual gaps help to provide each learner with the specific resources they need to achieve success.
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Student Resources
Pearson eText—The eText is “reflowable” to adapt to use on tablets and smartphones. 
You can insert your own highlights, notes, and bookmarks. It is also fully accessible using 
screen-readers. Download the Pearson+ app to access your eText on your smartphone or 
tablet anytime—even offline.

Study Slides—PowerPoint slides featuring key ideas and examples are available 
for students within the Video & Resource Library. These slides are compatible with 
screen readers.

Address Under-Preparedness—Each student learns at a different pace. Personalized 
learning pinpoints the precise areas where each student needs practice, giving all students 
the support they need—when and where they need it—to be successful.

New! Integrated Review can be used for just-in-time prerequisite review.

• Integrated Review at the chapter level provides a Skills Check assessment to pin-
point which prerequisite topics, if any, students need to review.

• Students who require additional review proceed to a personalized homework  
assignment to remediate.

• Integrated Review videos provide additional instruction.

Instructors that prefer to review at the section level can assign the Enhanced 
Assignments instead.

Personalized Homework—With Personalized Homework, students take a quiz or test and 
receive a subsequent homework assignment that is personalized based on their performance. 
This way, students can focus on just the topics they have not yet mastered.

Motivate Your Students—Students are motivated to succeed when they’re engaged in the 
learning experience and understand the relevance and power of math.

▼ Interactive Figures bring mathematical concepts to life, helping students see the 
concepts through directed explorations and purposeful manipulation. Many of the  
instructional videos that accompany the text include Interactive Figures to teach key 
concepts. These figures are assignable in MyLab Math and encourage active learning, 
critical thinking, and conceptual understanding. The figures were created by Marc  
Renault (Shippensburg University), Steve Phelps (University of Cincinnati), Kevin Hopkins 
(Southwest Baptist University), and Tim Brzezinski (Southington High School, CT).
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▼ Instructional videos—Hundreds of videos are available as learning aids within  
exercises and for self-study under the Video and Resource Library.

Other student resources include:

• Student’s Solutions Manual The Student’s Solutions Manual provides detailed 
worked-out solutions to the odd-numbered exercises in Thomas’ Calculus: Early Tran-
scendentals. Available in MyLab Math.

• Just-In-Time Algebra and Trigonometry for Early Transcendentals Calculus, 
Fourth Edition ISBN: 978-0-321-67103-5

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time 
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller 
and Ronald I. Brent is designed to bolster these skills while students study calculus. As 
students make their way through calculus, this brief supplementary text is with them 
every step of the way, showing them the necessary algebra or trigonometry topics and 
pointing out potential problem spots. The easy-to-use table of contents arranges topics 
in the order in which students will need them as they study calculus. This supplement 
is available in print only.

Instructor Resources
Your course is unique. So, whether you’d like to build your own assignments, teach mul-
tiple sections, or set prerequisites, MyLab gives you the flexibility to easily create your 
course to fit your needs.

Instructor’s eText—A page-for-page eText is available within the Instructor Resources 
section of MyLab Math.

Pre-Built Assignments are designed to maximize students’ performance. All assignments 
are fully editable to make your course your own.

New! Video Assignments featuring short videos with corresponding MyLab Math exercises 
are available for each section of the textbook. These editable assignments are especially help-
ful for online or “flipped” classes, where some or all the learning takes place independently.

Enhanced Assignments—These section-level assignments have three unique properties:

1. They help keep skills fresh with spaced practice of previously learned concepts.

2. Learning aids are strategically turned off for some exercises to ensure students under-
stand how to work the exercises independently.

3. They contain personalized prerequisite skills exercises for gaps identified in the  
chapter-level Skills Check Quiz.
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MyLab Math Question Library is correlated to the exercises in the text, reflecting the 
authors’ approach and learning style. They regenerate algorithmically to give students 
unlimited opportunity for practice and mastery. Below are a few exercise types available 
to assign:

▼ New! GeoGebra Exercises are gradable graphing and computational exercises that 
help students demonstrate their understanding. They enable students to interact directly 
with the graph in a manner that reflects how students would graph on paper.

• Nearly 100 More! Setup & Solve Exercises require students to first describe how they 
will set up and approach the problem. This reinforces conceptual understanding of the 
process applied in approaching the problem, promotes long-term retention of the skill, 
and mirrors what students will be expected to do on a test. This new exercise type was 
widely praised by users of the 14th edition, so more were added to the 15th edition.

• Conceptual Question Library focuses on deeper, theoretical understanding of the key  
concepts in calculus. These questions were written by faculty at Cornell University under 
a National Science Foundation grant and are also assignable through Learning Catalytics.

Learning Catalytics—With Learning Catalytics, you’ll hear from every student when it 
matters most. You pose a variety of questions in class (choosing from pre-loaded questions 
or your own) that help students recall ideas, apply concepts, and develop critical-thinking 
skills. Your students respond using their own smartphones, tablets, or laptops.

Performance Analytics enable instructors to see and analyze student performance across 
multiple courses. Based on their current course progress, individuals’ performance is iden-
tified above, at, or below expectations through a variety of graphs and visualizations.

Now included with Performance Analytics, Early Alerts use predictive analytics to 
identify struggling students—even if their assignment scores are not a cause for concern. 
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In both Performance Analytics and Early Alerts, instructors can email students individu-
ally or by group to provide feedback.

Accessibility—Pearson works continuously to ensure our products are as accessible as 
possible to all students. Currently, we are working toward achieving WCAG 2.0 AA for 
our existing products (2.1 AA for future products) and Section 508 standards, as expressed 
in the Pearson Guidelines for Accessible Educational Web Media (https://www.pearson 
.com/us/accessibility.html).

Other instructor resources include:

• Instructor’s Solutions Manual—The Instructor’s Solutions Manual provides com-
plete worked-out solutions for all exercises in Thomas’ Calculus: Early Transcen-
dentals. It can be downloaded from within MyLab Math or from Pearson’s online 
catalog at www.pearson.com.

• PowerPoint Lecture Slides feature editable lecture slides written and designed spe-
cifically for this text, including figures and examples.

• TestGen enables instructors to build, edit, print, and administer tests using a com-
puterized bank of questions developed to cover all the objectives of the text. TestGen 
is algorithmically based, allowing instructors to create multiple but equivalent ver-
sions of the same questions or test with the click of a button. Instructors can also 
modify test bank questions or add new questions. The software and test bank are 
available for download at www.pearson.com.

• Technology Manuals and Projects

Maple Manual and Projects
Mathematica Manual and Projects
TI-Graphing Calculator Manual

These manuals and projects cover Maple 2021, Mathematica 12, and TI-84 Plus and 
TI-89. Each manual provides detailed guidance for integrating a specific software 
package or graphing calculator throughout the course, including syntax and com-
mands. The projects include instructions and ready-made application files for Maple 
and Mathematica. Available to download within MyLab Math.

Learn more at pearson.com/mylab/math.

http://pearson.com/mylab/math
http://www.pearson.com/
http://www.pearson.com/
https://www.pearson.com/us/accessibility.html
https://www.pearson.com/us/accessibility.html
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OVERVIEW In this chapter we review what functions are and how they are visualized as 
graphs, how they are combined and transformed, and ways they can be classified.

Functions

1 

DEFINITION A function  f  from a set D to a set Y is a rule that assigns a single 
value f x( ) in Y to each x in D.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 
represented by an equation, a graph, a numerical table, or a verbal description; we will use 
all four representations throughout this text. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The inter-
est paid on a cash investment depends on the length of time the investment is held. The 
area of a circle depends on the radius of the circle. The distance an object travels depends 
on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 
variable quantity, which we often call x. We say that “y is a function of x” and write this 
symbolically as

y f x y f x( ) “ equals of ” .( )=

The symbol  f  represents the function, the letter x is the independent variable represent-
ing the input value to f, and y is the dependent variable or output value of  f  at x.

A rule that assigns more than one value to an input x, such as the rule that assigns to a 
positive number both the positive and negative square roots of the number, does not describe 
a function.

The set D of all possible input values is called the domain of the function. The domain of  f  
will sometimes be denoted by D f( ). The set of all output values f x( ) as x varies throughout D 
is called the range of the function. The range might not include every element in the set Y. The 
domain and range of a function can be any sets of objects, but often in calculus they are sets of 
real numbers interpreted as points of a coordinate line. (In Chapters 13–16, we will encounter 
functions for which the elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value 
from the input variable. For instance, the equation π=A r 2 is a rule that calculates the 
area A of a circle from its radius r. When we define a function  f  with a formula y f x( )=  
and the domain is not stated explicitly or restricted by context, the domain is assumed to be 
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the largest set of real x-values for which the formula gives real y-values. This is called the 
natural domain of  f. If we want to restrict the domain in some way, we must say so. The 
domain of =y x 2 is the entire set of real numbers. To restrict the domain of the function 
to, say, positive values of x, we would write “ = >y x x, 02 .”

Changing the domain to which we apply a formula usually changes the range as well. 
The range of =y x 2 is [ )∞0, . The range of = ≥y x x, 22 , is the set of all numbers 
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix A.1),  
the range is { }≥x x 22  or { }≥y y 4  or [ )∞4, .

When the range of a function is a set of real numbers, the function is said to be  
real-valued. The domains and ranges of most real-valued functions we consider are inter-
vals or combinations of intervals. Sometimes the range of a function is not easy to find.

A function  f  is like a machine that produces an output value f x( ) in its range when-
ever we feed it an input value x from its domain (Figure 1.1). The function keys on a 
calculator give an example of a function as a machine. For instance, whenever you enter 
a nonnegative number x and press the x  key, the calculator gives an output value (the 
square root of x).

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow asso-
ciates to an element of the domain D a single element in the set Y. In Figure 1.2, the 
arrows indicate that f a( ) is associated with a, f x( ) is associated with x, and so on. Notice 
that a function can have the same output value for two different input elements in  
the domain (as occurs with f a( ) in Figure 1.2), but each input element x is assigned a 
single output value f x( ).

EXAMPLE 1  Verify the natural domains and associated ranges of some simple  
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain x( ) Range y( )

y x 2= −( )∞ ∞, [ )∞0,

y x1= −( ) ( )∞ ∪ ∞, 0 0, −( ) ( )∞ ∪ ∞, 0 0,

y x= [ )∞0, [ )∞0,

y x4= − −( ]∞, 4 [ )∞0,

y x1 2= − −[ ]1,1 [ ]0,1

Solution The formula =y x 2 gives a real y-value for any real number x, so the domain is 
,−( )∞ ∞ . The range of =y x 2 is [ )∞0,  because the square of any real number is non-

negative and every nonnegative number y is the square of its own square root: ( )=y y
2
.

The formula y x1=  gives a real y-value for every x except =x 0. For consistency 
in the rules of arithmetic, we cannot divide any number by zero. The range of y x1= , the 
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 

( )=y y1 1 . That is, for ≠y 0 the number x y1=  is the input that is assigned to the 
output value y.

The formula y x=  gives a real y-value only if ≥x 0. The range of =y x  is 
[ )∞0,  because every nonnegative number is some number’s square root (namely, it is the 
square root of its own square).

In = −y x4 , the quantity − x4  cannot be negative. That is, − ≥x4 0,  
or ≤x 4. The formula gives nonnegative real y-values for all ≤x 4. The range of − x4  
is [ )∞0, , the set of all nonnegative numbers.

The formula y x1 2= −  gives a real y-value for every x in the closed interval from 
1−  to 1. Outside this domain, − x1 2 is negative and its square root is not a real number. 

The values of − x1 2 vary from 0 to 1 on the given domain, and the square roots of these 
values do the same. The range of − x1 2  is [ ]0,1 . 

FIGURE 1.1 A diagram showing a func-
tion as a kind of machine.

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.2 A function from a set D to  
a set Y assigns a unique element of Y to 
each element in D.

x

a f (a) f (x)

D = domain set Y = set containing
the range
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Graphs of Functions

If  f  is a function with domain D, its graph consists of the points in the Cartesian plane 
whose coordinates are the input-output pairs for  f. In set notation, the graph is

x f x x D, ( ) .( ){ }∈

The graph of the function f x x( ) 2= +  is the set of points with coordinates ( )x y,  
for which = +y x 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function  f  is a useful picture of its behavior. If ( )x y,  is a point on the 
graph, then y f x( )=  is the height of the graph above (or below) the point x. The height 
may be positive or negative, depending on the sign of f x( ) (Figure 1.4).

FIGURE 1.3 The graph of f x x( ) 2= +  
is the set of points x y,( ) for which y has the 
value x 2+ .

x

y

- 2 0

2

y  = x + 2

FIGURE 1.4 If x y,( ) lies on the graph 
of f, then the value y f x( )=  is the height 
of the graph above the point x (or below x if 
f x( ) is negative).
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x
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f (x)

(x, y)

f (1)

f (2)

x =y x 2

−2 4

−1 1

0 0

1 1

3
2

9
4

2 4 EXAMPLE 2  Graph the function =y x 2 over the interval −[ ]2, 2 .

Solution Make a table of xy-pairs that satisfy the equation =y x 2. Plot the points ( )x y,  
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 
through the plotted points (see Figure 1.5). 

How do we know that the graph of =y x 2 doesn’t look like one of these curves?

FIGURE 1.5 Graph of the function 
in Example 2.
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To find out, we could plot more points. But how would we then connect them? The basic 
question still remains: How do we know for sure what the graph looks like between the 
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 
we will have to settle for plotting points and connecting them as best we can.
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Representing a Function Numerically

A function may be represented algebraically by a formula and visually by a graph 
(Example 2). Another way to represent a function is numerically, through a table of val-
ues. From an appropriate table of values, a graph of the function can be obtained using the 
method illustrated in Example 2, possibly with the aid of a computer. The graph consisting 
of only the points in the table is called a scatterplot.

EXAMPLE 3  Musical notes are pressure waves in the air. The data associated with 
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 
produced by a tuning fork. The table provides a representation of the pressure function 
(in micropascals) over time. If we first make a scatterplot and then draw a smooth curve 
that approximates the data points ( )t p,  from the table, we obtain the graph shown in  
the figure.

Time Pressure

0.00091 −0.080

0.00108 0.200

0.00125 0.480

0.00144 0.693

0.00162 0.816

0.00180 0.844

0.00198 0.771

0.00216 0.603

0.00234 0.368

0.00253 0.099

0.00271 −0.141

0.00289 −0.309

0.00307 −0.348

0.00325 −0.248

0.00344 −0.041

0.00362 0.217

0.00379 0.480

0.00398 0.681

0.00416 0.810

0.00435 0.827

0.00453 0.749

0.00471 0.581

0.00489 0.346

0.00507 0.077

0.00525 −0.164

0.00543 −0.320

0.00562 −0.354

0.00579 −0.248

0.00598 −0.035

FIGURE 1.6 A smooth curve approximating the  
plotted points gives a graph of the pressure function  
represented by the accompanying tabled data  
(Example 3).

−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

−0.6

t (sec)

p (pressure, mPa)

0.001 0.002 0.004 0.0060.003 0.005

Data

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function  f  can 
have only one value f x( ) for each x in its domain, so no vertical line can intersect the graph 
of a function at more than one point. If a is in the domain of the function f, then the vertical 
line =x a will intersect the graph of  f  at the single point a f a, ( )( ).

A circle cannot be the graph of a function, since some vertical lines intersect the circle 
twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of 
x, namely the upper semicircle defined by the function f x x( ) 1 2= −  and the lower 
semicircle defined by the function g x x( ) 1 2−= −  (Figures 1.7b and 1.7c).

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The 
upper semicircle is the graph of the function f x x( ) 1 2= − . (c) The lower semicircle is the 
graph of the function g x x( ) 1 2−= − .
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Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 
of its domain. One example is the absolute value function

=
≥

− <






x

x x

x x

, 0

, 0

First formula

Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the 
function equals x if ≥x 0, and equals −x if <x 0. Piecewise-defined functions often 
arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4  The function

=

− <

≤ ≤

>










f x

x x

x x

x

( )

, 0

, 0 1

1, 1

First formula

Second formula

Third formula

2

is defined on the entire real line but has values given by different formulas, depending on 
the position of x. The values of  f  are given by −=y x  when < =x y x0, 2 when 
≤ ≤x0 1, and =y 1 when >x 1. The function, however, is just one function whose 

domain is the entire set of real numbers (Figure 1.9). 

EXAMPLE 5  The function whose value at any number x is the greatest integer less 
than or equal to x is called the greatest integer function or the integer floor function. It 
is denoted  x . Figure 1.10 shows the graph. Observe that

− −
− − − −

       
       

= = = =
= = = =

2.4 2, 1.9 1, 0 0, 1.2 2,

2 2, 0.2 0, 0.3 1, 2 2.

EXAMPLE 6  The function whose value at any number x is the smallest integer greater 
than or equal to x is called the least integer function or the integer ceiling function. It 
is denoted  x . Figure 1.11 shows the graph. For positive values of x, this function might 
represent, for example, the cost of parking x hours in a parking lot that charges $1 for each 
hour or part of an hour. 

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 
function is increasing. If the graph descends or falls as you move from left to right, the 
function is decreasing.

FIGURE 1.10 The graph of the greatest 
integer function y x =  lies on or below 
the line y x= , so it provides an integer 
floor for x (Example 5).

1

- 2

2

3

- 2 - 1 1 2 3

y = x
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x

y

FIGURE 1.11 The graph of the least 
integer function y x =  lies on or above 
the line y x= , so it provides an integer 
ceiling for x (Example 6).
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y = xy = <x=

FIGURE 1.8 The absolute value function 
has domain ,−( )∞ ∞  and range 0,[ )∞ .
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FIGURE 1.9 To graph the function 
y f x( )=  shown here, we apply different 
formulas to different parts of its domain 
(Example 4).
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DEFINITIONS Let  f  be a function defined on an interval I and let x1 and x 2 be 
two distinct points in I.

1. If >f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be increasing on I.

2. If <f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be decreasing on I.

It is important to realize that the definitions of increasing and decreasing functions 
must be satisfied for every pair of points x1 and x 2 in I with <x x1 2. Because we use the 
inequality < to compare the function values, instead of ≤, it is sometimes said that  f  is 
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) 
or infinite (unbounded).
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EXAMPLE 7  The function graphed in Figure 1.9 is decreasing on , 0−( )∞  and increas-
ing on ( )0,1 . The function is neither increasing nor decreasing on the interval ( )∞1,  because 
the function is constant on that interval, and hence the strict inequalities in the definition of 
increasing or decreasing are not satisfied on ( )∞1, . 

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have special symmetry properties.

FIGURE 1.12 (a) The graph  
of y x 2=  (an even function)  
is symmetric about the y-axis.  
(b) The graph of y x 3=  (an odd 
function) is symmetric about the 
origin.
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DEFINITIONS A function y f x( )=  is an

−

− =

− =

x

x

f x f x

f x f x

even function of

odd function of

if ( ) ( ),

if ( ) ( ),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 
=y x 2 or =y x 4, it is an even function of x because − =x x( )2 2 and − =x x( )4 4. If  

y is an odd power of x, as in =y x  or =y x 3, it is an odd function of x because 
−− =x x( )1  and −− =x x( )3 3.

The graph of an even function is symmetric about the y-axis. Since − =f x f x( ) ( ),  
a point ( )x y,  lies on the graph if and only if the point −( )x y,  lies on the graph (Fig-
ure 1.12a). A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since −− =f x f x( ) ( ),  
a point ( )x y,  lies on the graph if and only if the point − −( )x y,  lies on the graph (Fig-
ure 1.12b). Equivalently, a graph is symmetric about the origin if a rotation of 180° 
about the origin leaves the graph unchanged.

Notice that each of these definitions requires that both x and −x be in the domain of  f.

EXAMPLE 8  Here are several functions illustrating the definitions.

f x x( ) 2= Even function: − =x x( )2 2 for all x; symmetry about y-axis. So 
− = =f f( 3) 9 (3). Changing the sign of x does not change the 

value of an even function. 

f x x( ) 12= +  Even function: − + = +x x( ) 1 12 2  for all x; symmetry about 
y-axis (Figure 1.13a).
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FIGURE 1.13 (a) When we add the constant term 1 to the function y x 2= , 
the resulting function y x 12= +  is still even and its graph is still symmetric 
about the y-axis. (b) When we add the constant term 1 to the function y x= ,  
the resulting function y x 1= +  is no longer odd, since the symmetry about 
the origin is lost. The function y x 1= +  is also not even (Example 8).




